DS 440 Data Mining

Instructor: Prashant Shekhar, PhD

Tentative Schedule for Fall 2022

Week Number:	Topic	Homework	Learning
Starting Date (days)	1		Outcome
Unit I: Data Mining Basics			
1: 29^{th} Aug (M,W,F)	Course introduction		1,2
	Python basics		5
	Computations in python: numpy		5
2: 5^{th} Sept (W,F)	Computations in python: scipy		5
	Data visualization in python: matplotlib		5
3: 12^{th} Sept (M,W,F)	Data characteristics	HW1 released	1,2
	Data quality and preprocessing		1,2,5
	Machine Learning in python: sklearn		1,2,5
Unit II: Supervised Learning			
4: 19^{th} Sept (M,W,F)	Introduction to regression		4,5,7
	Linear regression		4,5,7
	Linear regression II		4,5,7
5: 26^{th} Sept (M,W,F)	Ridge Regression		4.5.7
	Hurricane Ian		, - , -
	Hurricane Ian		
6: 3^{rd} Oct (M,W,F)	Regression Review	HW1 due	4.5.7
	Lasso Regression	HW2 released	4.5.7
	Overfitting & model selection in regression		4.5.7
7: 10 th Oct (M,W,F)	Introduction to classification		4.5.7
	Logistic regression		4.5.7
	Decision trees		4.5.7
8: 17 th Oct (M,W)	Bandom forest	Project details due	4.5.7
	Classifier evaluation	HW2 due	4.5.7
9: 24^{th} Oct (M,W,F)	Overfitting and classifier model selection	HW3 released	3
	Ensemble methods: bagging		3.4.7
	Ensemble methods: boosting		3.4.7
10: 31^{st} Oct (M,W,F)	K-nearest neighbor classification		4.5.7
	Support vector machines		4.5.7
Unit III: Unsupervised Learning			
	Association analysis: apriori		457
11: 7^{th} Nov (M,W)	Clustering: K-means	HW3 due/ HW4 released	4,5,7
	Cluster evaluation	11W5 duc/ 11W4 Teleased	4,5,7
	Tost roviow		4,0,1
12: 14^{th} Nov (M,W,F)	Tost		
	Anomaly detection I		157
	Anomaly detection I		4,5,7
13: 21 NOV (M)			4,5,7
I nanksgiving Break			
Course Conclusion			
14: 28^{th} Nov (M,W,F)	Course review	HW4 due	
	Project presentation I		6
	Project presentation II		6
15: 5^{th} Dec (M W)	Project presentation III		6
	Project presentation IV	Project due	6

Learning outcome: After successful completion of this course, you will acquire knowledge to:

- 1. Understand the main goals and types of data mining.
- 2. Identify a broad variety of real-world applications of data mining.
- 3. Identify the strengths and limitations of popular data mining techniques.
- 4. Explain the mathematics concepts behind several data mining methods such as decision trees, k-nearest neighborhood, Bayesian method, support vector machine, neural network, etc.
- 5. Gain hands-on experience in the use of machine learning software tools in Python.
- 6. Gain teamwork experience to handle real-world data-mining projects and expand their expertise beyond traditional book learning exercises.
- 7. Demonstrate the ability to solve problems beyond the scope of textbook exercises.