DS 540 Data Mining

Instructor: Prashant Shekhar, PhD

Tentative Schedule for Spring 2023

Week Number: Days	Chapter Number	Topic	Homework	Learning Outcome
Data Mining Basics				
1: 12^{th} Jan (Th)	1	Course Introduction		1,2,13
2: 17^{th} Jan/ 19^{th} Jan (Tu,Th)	2	Types of data Data quality		$1,3 \\ 1,3$
3: 24^{th} Jan/ 26^{th} Jan (Tu,Th)	2	Similarity and Distance Guest lecture: Data Preprocessing	HW 1 released	$1,4 \\ 1,4$
Classification Basics				
4: 31^{st} Jan/ 2^{nd} Feb 2 (Tu, Th)	3	Review of topics Guest lecture: Rule Based		$5,6 \\ 5,6$
5: 7^{th} Feb/ 9^{th} Feb (Tu,Th)	4	Decision Trees: I Decision Trees: II	HW 1 due	$5,6 \\ 5,6$
6: 14^{th} Feb/ 16^{th} Feb (Tu,Th)	3	Classifier Evaluation Validation and Overfitting	HW 2 released	5,6,7 5,6,7
Classification Algorithms				
7: 21 st Feb/ 23 rd Feb (Tu,Th)	4	K-Nearest Neighbor/ Exam review Exam 1		$5,6 \\ 2,13$
8: 28^{th} Feb/ 2^{nd} Mar (Tu,Th)	4	Support Vector Machines: I Support Vector Machines: II		5,6 5.6
9: 7 th Mar/ 9 th Mar (Tu,Th)	4	Ensemble Methods: I Ensemble Methods: II	HW 2 due HW 3 released	5,6,8 5,6,8
Spring Break				
11: 21 st Mar/ 23 rd Mar (Tu,Th)	4	Imbalanced Classes Naive Bayes		$5,6,9 \\ 5,6,9$
Association Analysis				
12: 28^{th} Mar/ 30^{th} Mar (Tu,Th)	5	Apriori Algorithm /Exam review Exam 2	HW 3 due HW 4 released	10
Clustering Analysis				
13: 4^{th} Apr/ 6^{th} Apr (Tu,Th)	7	KMeans Algorithm Cluster Evaluation		11 11
Anomaly Detection				
14: 11 th Apr/ 13 th Apr (Tu,Th)	9	Proximity-based Clustering-based		12 12
Project				
15: 18 th Apr/ 20 th Apr (Tu,Th)		Course conclusion	HW 4 due	12
		Project Presentation I		2,13
16: 25^{th} Apr/ 27^{th} Apr (Tu,Th)		Project Presentation II Project Presentation III	Project due	2,13 2,13

Learning outcome: After successful completion of this course, you will acquire knowledge to:

- 1. Understand the basics of data mining and its relation to machine learning.
- 2. Use python as an efficient tool for data mining
- 3. Understand the types of data and evaluate its quality, distribution etc.
- 4. Implement foundational data preprocessing techniques for effective data mining.
- 5. Understand the basics of supervised learning
- 6. Implement and analyze prominent classification algorithms for data mining.
- 7. Evaluate and compare various classification algorithms
- 8. Combining multiple classification models to create better models.
- 9. Handle unbalanced classes in classification problems.
- 10. Understand and implement association analysis.
- 11. Understand and implement clustering analysis.
- 12. Understand and implement anomaly detection.
- 13. Apply the concepts learnt in class to problems of practical importance.